Abstract
Different universal methods (also called automatic or black-box methods) have been suggested for sampling form univariate log-concave distributions. The descriptioon of a suitable universal generator for multivariate distributions in arbitrary dimensions has not been published up to now. The new algorithm is based on the method of transformed density rejection. To construct a hat function for the rejection algorithm the multivariate density is transformed by a proper transformation T into a concave function (in the case of log-concave density T(x) = log( x ).) Then it is possible to construct a dominating function by taking the minimum of serveral tangent hyperplanes that are transformed back by T -1 into the original scale. The domains of different pieces of the hat function are polyhedra in the multivariate case. Although this method can be shown to work, it is too slow and complicated in higher dimensions. In this article we split the ℝ n into simple cones. The hat function is constructed piecewise on each of the cones by tangent hyperplanes. The resulting function is no longer continuous and the rejection constant is bounded from below but the setup and the generation remains quite fast in higher dimensions; for example, n = 8. The article describes the details of how this main idea can be used to construct algorithm TDRMV that generates random tuples from a multivariate log-concave distribution with a computable density. Although the developed algorithm is not a real black box method it is adjustable for a large class of log-concave densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Modeling and Computer Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.