Abstract

Various power management techniques have been exploited to reduce the energy consumption of data centers. In this work, we propose a reinforcement learning-based power management framework for data centers, which does not rely on any given stationary assumptions of the job arrival and job service processes. By carefully designing the state space, the action space, and the reward of a learning process, the objective of the reinforcement learning agent coincides with our goal of reducing the server pool energy consumption with reasonable average job response time. Real Google cluster data traces are used to verify the effectiveness of the proposed reinforcement learning-based data center power management framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.