Abstract

We explore a reinforcement learning strategy to automate and accelerate h/p-multigrid methods in high-order solvers. Multigrid methods are very efficient but require fine-tuning of numerical parameters, such as the number of smoothing sweeps per level and the correction fraction (i.e., proportion of the corrected solution that is transferred from a coarser grid to a finer grid). The objective of this paper is to use a proximal policy optimization algorithm to automatically tune the multigrid parameters and, by doing so, improve stability and efficiency of the h/p-multigrid strategy.Our findings reveal that the proposed reinforcement learning h/p-multigrid approach significantly accelerates and improves the robustness of steady-state simulations for one-dimensional advection-diffusion and nonlinear Burgers' equations, when discretized using high-order h/p methods, on uniform and nonuniform grids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.