Abstract
In this paper we consider the problem of reinforcement learning in a dynamically changing environment. In this context, we study the problem of adaptive control of finite-state Markov chains with a finite number of controls. The transition and payoff structures are unknown. The objective is to find an optimal policy which maximizes the expected total discounted payoff over the infinite horizon. A stochastic neural network model is suggested for the controller. The parameters of the neural net, which determine a random control strategy, are updated at each instant using a simple learning scheme. This learning scheme involves estimation of some relevant parameters using an adaptive critic. It is proved that the controller asymptotically chooses an optimal action in each state of the Markov chain with a high probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.