Abstract

This paper proposes a model of selective attention for visual search tasks, based on a framework for sequential decision-making. The model is implemented using a fixed pan-tilt-zoom camera in a visually cluttered lab environment, which samples the environment at discrete time steps. The agent has to decide where to fixate next based purely on visual information, in order to reach the region where a target object is most likely to be found. The model consists of two interacting modules. A reinforcement learning module learns a policy on a set of regions in the room for reaching the target object, using as objective function the expected value of the sum of discounted rewards. By selecting an appropriate gaze direction at each step, this module provides top-down control in the selection of the next fixation point. The second module performs “within fixation” processing, based exclusively on visual information. Its purpose is twofold: to provide the agent with a set of locations of interest in the current image, and to perform the detection and identification of the target object. Detailed experimental results show that the number of saccades to a target object significantly decreases with the number of training epochs. The results also show the learned policy to find the target object is invariant to small physical displacements as well as object inversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.