Abstract

Vehicular ad hoc networks (VANETs) are crucial components of intelligent transportation systems (ITS) aimed at enhancing road safety and providing additional services to vehicles and their users. To achieve reliable delivery of periodic status information, referred to as basic safety messages (BSMs) and event-driven alerts, vehicles need to manage the conflicting requirements of situational awareness and congestion control in a dynamic environment. To address this challenge, this paper focuses on controlling the message transmission rate through a Markov decision process (MDP) and solves it using a novel reinforcement learning (RL) algorithm. The proposed RL approach selects the most suitable transmission rate based on the current channel conditions, resulting in a balanced performance in terms of packet delivery and channel congestion, as shown by simulation results for different traffic scenarios. Additionally, the proposed approach offers increased flexibility for adaptive congestion control through the design of an appropriate reward function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.