Abstract
In this paper, an efficient optimization method based on reinforcement learning automata (RLA) for optimum parameters setting of conventional proportional-integral-derivative (PID) controller for AVR system of power synchronous generator is proposed. The proposed method is Continuous Action Reinforcement Learning Automata (CARLA) which is able to explore and learn to improve control performance without the knowledge of the analytical system model. This paper demonstrates the full details of the CARLA technique and compares its performance with Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) as two famous evolutionary optimization methods. The simulation results show the superior efficiency and performance of the proposed method in regard to other ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.