Abstract

AbstractLearning automata are reinforcement learners belonging to the class of policy iterators. They have already been shown to exhibit nice convergence properties in a wide range of discrete action game settings. Recently, a new formulation for a continuous action reinforcement learning automata (CARLA) was proposed. In this paper, we study the behavior of these CARLA in continuous action games and propose a novel method for coordinated exploration of the joint-action space. Our method allows a team of independent learners, using CARLA, to find the optimal joint action in common interest settings. We first show that independent agents using CARLA will converge to a local optimum of the continuous action game. We then introduce a method for coordinated exploration which allows the team of agents to find the global optimum of the game. We validate our approach in a number of experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.