Abstract

The vision of a Smart Electric Grid relies critically on substantial advances in intelligent decentralized control mechanisms. We propose a novel class of autonomous broker agents for retail electricity trading that can operate in a wide range of Smart Electricity Markets, and that are capable of deriving long-term, profit-maximizing policies. Our brokers use Reinforcement Learning with function approximation, they can accommodate arbitrary economic signals from their environments, and they learn efficiently over the large state spaces resulting from these signals. We show how feature selection and regularization can be leveraged to automatically optimize brokers for particular market conditions, and demonstrate the performance of our design in extensive experiments using real-world energy market data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.