Abstract
Owing to the advantages of Unmanned Aerial Vehicle (UAV), such as the extendibility, maneuverability and stability, multiple UAVs are having more and more applications in security surveillance. The object searching and trajectory planning become the important issues of uninterrupted patrol. We propose an online distributed algorithm for tracking and searching, while considering the energy refueling at the same time. The quantum probability model which describes the partially observable target positions is proposed. Moreover, the upper confidence tree algorithm is derived to resolve the best route, with the assistance of teammate learning model which handles the nonstationary problems in distributed reinforcement learning. Experiments and the analysis of the different situations show that the proposed scheme performs favorably.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.