Abstract

Efficient maintenance has always been essential for the successful application of engineering systems. However, the challenges to be overcome in the implementation of Industry 4.0 necessitate new paradigms of maintenance optimization. Machine learning techniques are becoming increasingly used in engineering and maintenance, with reinforcement learning being one of the most promising. In this paper, we propose a gamma degradation process together with a novel maintenance model in which repairs are increasingly imperfect, i.e., the beneficial effect of system repairs decreases as more repairs are performed, reflecting the degradational behavior of real-world systems. To generate maintenance policies for this system, we developed a reinforcement-learning-based agent using a Double Deep Q-Network architecture. This agent presents two important advantages: it works without a predefined preventive threshold, and it can operate in a continuous degradation state space. Our agent learns to behave in different scenarios, showing great flexibility. In addition, we performed an analysis of how changes in the main parameters of the environment affect the maintenance policy proposed by the agent. The proposed approach is demonstrated to be appropriate and to significatively improve long-run cost as compared with other common maintenance strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.