Abstract

The whale optimization algorithm has several advantages, such as simple operation, few control parameters, and a strong ability to jump out of the local optimum, and has been used to solve various practical optimization problems. In order to improve its convergence speed and solution quality, a reinforced whale optimization algorithm (RWOA) was designed. Firstly, an opposition-based learning strategy is used to generate other optima based on the best optimal solution found during the algorithm's iteration, which can increase the diversity of the optimal solution and accelerate the convergence speed. Secondly, a dynamic adaptive coefficient is introduced in the two stages of prey and bubble net, which can balance exploration and exploitation. Finally, a kind of individual information-reinforced mechanism is utilized during the encircling prey stage to improve the solution quality. The performance of the RWOA is validated using 23 benchmark test functions, 29 CEC-2017 test functions, and 12 CEC-2022 test functions. Experiment results demonstrate that the RWOA exhibits better convergence accuracy and algorithm stability than the WOA on 20 benchmark test functions, 21 CEC-2017 test functions, and 8 CEC-2022 test functions, separately. Wilcoxon's rank sum test shows that there are significant statistical differences between the RWOA and other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.