Abstract

We have recently reported that phosphatidylethanolamine (PE)-containing liposomes are endocytosed and then induce lipid droplets (LDs) in HEK293T cells. In this study, we elucidated a mechanism responsible for endocytosis of PE-containing liposomes and induction of LDs. By using fluorescence-labeled liposomes and flow cytometry, we found that PE-containing liposomes were very efficiently internalized in HEK293T cells. However, Block lipid transporter-1 (BLT-1) only marginally suppressed the uptake of these liposomes, indicating that entire liposomes were mostly taken up in these cells. They were therefore inferred to express abundant PE receptors responsible for endocytosis of PE-containing liposomes. We examined the expression of 52 candidate genes through transcriptomic analyses and eventually narrowed it down to four candidate genes, which were abundantly expressed in HEK293T cells. Among siRNAs targeting these candidates, scavenger receptor class B type 1 (SR-B1) siRNA showed the most profound reduction in PE liposomal uptake. Conversely, the expression of SR-B1 by transfection of an expression plasmid enhanced the uptake of PE-containing liposomes. After the internalization of PE-containing liposomes, they were colocalized with endosomes/lysosomes and SR-B1, which indicates that these liposomes are taken up in HEK293T cells at least partially through the endosomal/lysosomal pathway. A specific anti-SR-B1-antibody blocked the uptake of PE-containing liposomes in HEK293T cells while LD formation in these cells induced by PE-containing liposomes was suppressed by treatment with SR-B1 siRNA. These results demonstrate that SR-B1 functions as a receptor for the endocytosis of PE-containing liposomes and regulates the formation of LDs induced by PE-containing liposomes in HEK293T cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call