Abstract

Transcriptional activator proteins in bacteria often operate by interaction with the C-terminal domain of the alpha-subunit of RNA polymerase (RNAP). Here we report the discovery of an "anti-alpha" factor Spx in Bacillus subtilis that blocks transcriptional activation by binding to the alpha-C-terminal domain, thereby interfering with the capacity of RNAP to respond to certain activator proteins. Spx disrupts complex formation between the activator proteins ResD and ComA and promoter-bound RNAP, and it does so by direct interaction with the alpha-subunit. ResD- and ComA-stimulated transcription requires the proteolytic elimination of Spx by the ATP-dependent protease ClpXP. Spx represents a class of transcriptional regulators that inhibit activator-stimulated transcription by interaction with alpha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.