Abstract

Singular charge sources in terms of Dirac delta functions present a well-known numerical challenge for solving Poisson’s equation. For a sharp interface between inhomogeneous media, singular charges could be analytically treated by fundamental solutions or regularization methods. However, no analytical treatment is known in the literature in case of a diffuse interface of complex shape. This letter reports the first such regularization method that represents the Coulomb potential component analytically by Green’s functions to account for singular charges. The other component, i.e., the reaction field potential, then satisfies a regularized Poisson equation with a smooth source and the original elliptic operator. The regularized equation can then be simply solved by any numerical method. By considering two benchmark problems, the proposed regularization method is numerically validated and compared with a semi-analytical quasi-harmonic method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.