Abstract

AbstractIn this study a new radar rainfall estimation algorithm—rainfall estimation using simulated raindrop size distributions (RESID)—was developed. This algorithm development was based upon the recent finding that measured and simulated raindrop size distributions (DSDs) with matching triplets of dual-polarization radar observables (i.e., horizontal reflectivity, differential reflectivity, and specific differential phase) produce similar rain rates. The RESID algorithm utilizes a large database of simulated gamma DSDs, theoretical rain rates calculated from the simulated DSDs, the corresponding dual-polarization radar observables, and a set of cost functions. The cost functions were developed using both the measured and simulated dual-polarization radar observables. For a given triplet of measured radar observables, RESID chooses a suitable cost function from the set and then identifies nine of the simulated DSDs from the database that minimize the value of the chosen cost function. The rain rate associated with the given radar observable triplet is estimated by averaging the calculated theoretical rain rates for the identified simulated DSDs. This algorithm is designed to reduce the effects of radar measurement noise on rain-rate retrievals and is not subject to the regression uncertainty introduced in the conventional development of the rain-rate estimators. The rainfall estimation capability of our new algorithm was demonstrated by comparing its performance with two benchmark algorithms through the use of rain gauge measurements from the Midlatitude Continental Convective Clouds Experiment (MC3E) and the Olympic Mountains Experiment (OLYMPEx). This comparison showed favorable performance of the new algorithm for the rainfall events observed during the field campaigns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.