Abstract

This research proposes a novel, autonomous, regression-based methodology for Allan variance analysis of inertial measurement unit (IMU) sensors. Current methods for Allan variance analysis have been rooted in the human-based interpretation of linear trends, referred to as the slope method. The slope method is so prolific; it is referenced among electrical and electronics engineering standards for IMU error analysis. However, the graphical nature and visual-inspection–based use of the method limit its ability to be programmed as a generalized algorithm, which hinders the autonomy desired in modern-day navigation computations. Using nonlinear regression with a ridge-regression initial guess, the proposed method is shown to produce comparable results to the gold standard slope method when using standard-length data collections and outperforms the slope method when the amount of available data is limited. This development directly enables accurate navigation solutions for all vehicles in land, air, sea, and space operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.