Abstract

A methodology is proposed for the calibration of river water quality models on large watersheds, in the absence of intensive measurements for water quality and quantity. This methodology is based on: 1) the use of the results from a hydrological model to provide the required hydrological variables to the water quality model; 2) five assumptions for the definition of initial and boundary conditions; 3) a three-step regionalized calibration method, in which the specific characteristics of the different subwatersheds are taken into account and 4) the adjustment of some parameters in order to reproduce processes that are not explicitly represented in the model. The regionalized calibration method relies on a comprehensive study of the land use and characteristics on each subwatershed and the definition of different sets of parameters values in distinct regions. Application to the Cau River, in Vietnam, with QUAL-GIBSI, an adaptation of the QUAL2E model, showed that: i) calibration and validation results were significantly improved by applying regionalized calibration as compared to an initial calibration for which a single set of parameters values was used for the whole simulated river stretch and ii) use of a hydrological model to provide discharge at various points in the watershed allowed to overcome the lack of detailed measurements of discharge at locations other than the watershed outlet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call