Abstract

In order to gain knowledge of the temperature variability prior to the establishment of a widespread network of instrumental measurements c. AD 1850, we have to draw information from proxy data sensitive to temperature variations. Such data can be extracted from various natural recorders of climate variability, such as corals, fossil pollen, ice-cores, lake and marine sediments, speleothems, and tree-ring width and density, as well as from historical records (for a review, see IPCC 2007; Jones et al. 2009; NRC 2006). Considerable effort has been made during the last decade to reconstruct global or northern hemispheric temperatures for the past 1000 to 2000 years in order to place the observed 20th century warming in a long-term perspective (e.g., Briffa, 2000; Cook et al., 2004; Crowley and Lowery, 2000; D’Arrigo, 2006; Esper et al., 2002; Hegerl et al., 2007; Jones et al., 1998; Jones and Mann, 2004; Juckes et al., 2007; Ljungqvist, 2010; Loehle, 2007; Mann et al., 1999; Mann et al., 2008; Mann et al., 2009; Mann and Jones, 2003; Moberg et al., 2005; Osborn and Briffa, 2006). Less effort has been put into investigating the key question of to what extent earlier warm periods have been as homogeneous in timing and amplitude in different geographical regions as the present warming. It has been suggested that late-Holocene long-term temperature variations, such as the Medieval Warm Period (MWP) and the Little Ice Age (LIA), have been restricted to the circum-North Atlantic region (including Europe) and have not occurred synchronic in time with warm and cold periods respectively in other regions (Hughes and Diaz, 1994; Mann et al., 1999; Mann and Jones, 2003). This view has, however, been increasingly challenged through the ever growing amount of evidence of a global (or at least northern hemispheric) extent of the MWP and the LIA that have become available (see, for example, Esper and Frank, 2009; Ljungqvist, 2009, 2010; Moberg et al., 2005; Wanner et al., 2008). A main obstacle in large-scale temperature reconstructions continues to be the limited and unevenly distributed number of quantitative palaeotemperature records extending back a millennium or more. The limited number of records have rendered it impossible to be very selective in the choice of data. Palaeotemperature records used in a large-scale temperature reconstruction should preferably be accurately dated, have a high sample resolution and have a high correlation with the local instrumental temperature record in the calibration period (see the discussion in Jones et al., 2009). The number of long quantitative 1

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call