Abstract

Techniques for modeling spatial variability in the loss, gain, and storage of total nitrogen (N) in an agricultural landscape were developed utilizing a geographic information system (GIS) based on the Map Analysis Package (C.D. Tomlin, Yale University). The study area is a well-monitored portion (upper 114.9 km2) of the Little River Watershed, located near Tifton, Georgia, U.S.A. On the basis of measured N in the soil and vegetation, and the gains and losses of N by stream discharge, fertilizer, precipitation, N fixation, crop harvest, etc., it was possible to quantify and map source and sink regions of Total N, and to calculate a mass balance of N for an entire year. Results indicate massive flows of N, especially from anthropogenic sources. However, for the watershed as a whole, the N is virtually in balance with a small accretion occurring mostly in the riparian zones. Stream discharge of total N indicates that this landscape is well-buffered against excessive losses of N despite the large agricultural inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.