Abstract

Existing computational models of visual attention generally employ simple image features such as color, intensity or orientation to generate a saliency map which highlights the image parts that attract human attention. Interestingly, most of these models do not process any depth information and operate only on standard two-dimensional RGB images. On the other hand, depth processing through stereo vision is a key characteristics of the human visual system. In line with this observation, in this study, we propose to extend two state-of-the-art static saliency models that depend on region covariances to process additional depth information available in RGB-D images. We evaluate our proposed models on NUS-3D benchmark dataset by taking into account different evaluation metrics. Our results reveal that using the additional depth information improves the saliency prediction in a statistically significant manner, giving more accurate saliency maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.