Abstract
This paper addresses the generalized set-point and region control problem for an underwater vehicle. It is known that the desired target is usually defined as a point or a region. However, in some applications, it is required to navigate the underwater vehicle to the surface or a boundary of a region. In this work, a novel control law is proposed for an autonomous underwater vehicle where the desired position is specified as a boundary in lieu of a region or a point. Hence, the system can be initialized from either inside or outside of the region. For a mapping of the uncertain persistent effects i.e.: the restoring forces, a least-squares estimation algorithm along with the inverse Jacobian matrix is utilized in the adaptive control law. The unit quaternion representation is used for the attitude representation. The stability analysis is carried out using the Lyapunov type approach. The simulation results illustrate the validity of the proposed control scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.