Abstract

The stochastic switching SIR epidemic model with saturated incidence and limited medical treatment is investigated in this paper. By using Lyapunov methods and Itô formula, we first prove that the system has a unique global positive solution with any positive initial value. Then combining inequality technique and the ergodic property of Markov switching, the sufficient conditions for extinction and persistence in the mean of the disease are established. The results demonstrate that increasing medical resources and improving supply efficiency can accelerate the transition from the persistent state to the extinct state. Meanwhile, the high incidence rate will slow down the extinction of the disease. Specially, the switching noise can induce the system to toggle between the extinct and persistent states. Finally, some numerical simulations are carried out to confirm the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.