Abstract

In this study, N-rich hierarchical porous carbons (NPCs) were synthesized via one step strategy from cypress sawdust with carbon nitride (CN) loading and K2CO3 activation. NPCs exhibited excellent performance for H2S removal with the sulfur capacity up to 426.2 mg/g at room temperature. It was much higher than 12.5 mg/g of porous carbon (PC) which was only activated by K2CO3. The NPCs with CN loading showed hierarchical porous structure with micropores and mesopores volume up to 0.434 and 0.597 cm3/g, respectively. Moreover, NPCs had high N contents (up to 12.37 wt%) and high relative contents of pyridinic N and pyrrolic N within 76.61–84.37%, which were identified as active sites for H2S adsorption by density functional theory calculation, enhancing H2S removal. The formation mechanism of NPCs was investigated by TG-FTIR, suggesting that CN pyrolysis result in hierarchical porous structure and rich N-containing functional groups by gradually releasing H2O, CO2 and NH3. Moreover, the NPCs showed high regeneration ability, remaining 86.6% of the initial sulfur capacity after five regeneration cycles, and sulfur (S) was the main desulfurization product (H2S + O2 → S + H2O). The results demonstrate that NPCs are promising catalysts to remove H2S efficiently with low cost and high reusability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.