Abstract
There are no planets intermediate in size between Earth and Neptune in our Solar System, yet these objects are found around a substantial fraction of other stars1. Population statistics show that close-in planets in this size range bifurcate into two classes on the basis of their radii2,3. It is proposed that the group with larger radii (referred to as 'sub-Neptunes') is distinguished by having hydrogen-dominated atmospheres that are a few percent of the total mass of the planets4. GJ 1214b is an archetype sub-Neptune that has been observed extensively using transmission spectroscopy to test this hypothesis5-14. However, the measured spectra are featureless, and thus inconclusive, due to the presence of high-altitude aerosols in the planet's atmosphere. Here we report a spectroscopic thermal phase curve of GJ 1214b obtained with the James Webb Space Telescope (JWST) in the mid-infrared. The dayside and nightside spectra (average brightness temperatures of 553 ± 9 and 437 ± 19 K, respectively) each show more than 3σ evidence of absorption features, with H2O as the most likely cause in both. The measured global thermal emission implies that GJ 1214b's Bond albedo is 0.51 ± 0.06. Comparison between the spectroscopic phase curve data and three-dimensional models of GJ 1214b reveal a planet with a high metallicity atmosphere blanketed by a thick and highly reflective layer of clouds or haze.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.