Abstract

Uniform reflection coefficients are developed for two- and three-dimensional, edge-like, perfectly conducting surfaces in the deep lit region. The uniformity is with respect to the electrical size of the radii of curvature at the surface's specular point. This uniformity allows one to physically interpret the reflected field from a smooth surface as one of the radii of curvature approaches zero as a diffracted field. The coefficients are heuristically generated from the exact scattered field for a two dimensional parabolic cylinder with plane wave illumination. The significant variables in this solution are the radii of curvature at the specular point and the distance between the specular point and the incident shadow boundaries in the principal planes. The field prediction accuracy of these reflection coefficients are critically examined through comparisons with reflected fields extracted from scattered fields of canonical surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call