Abstract

We introduce a "renormalized entanglement entropy" which is intrinsically UV finite and is most sensitive to the degrees of freedom at the scale of the size R of the entangled region. We illustrated the power of this construction by showing that the qualitative behavior of the entanglement entropy for a non-Fermi liquid can be obtained by simple dimensional analysis. We argue that the functional dependence of the "renormalized entanglement entropy" on R can be interpreted as describing the renormalization group flow of the entanglement entropy with distance scale. The corresponding quantity for a spherical region in the vacuum, has some particularly interesting properties. For a conformal field theory, it reduces to the previously proposed central charge in all dimensions, and for a general quantum field theory, it interpolates between the central charges of the UV and IR fixed points as R is varied from zero to infinity. We conjecture that in three (spacetime) dimensions, it is always non-negative and monotonic, and provides a measure of the number of degrees of freedom of a system at scale R. In four dimensions, however, we find examples in which it is neither monotonic nor non-negative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.