Abstract

For years, formal methods have been successfully applied in the railway domain to formally demonstrate safety of railway systems. Despite that, little has been done in the field of formal methods to address the cyber-physical nature of modern railway signalling systems. In this article, we present an approach for a formal development of cyber-physical railway signalling systems that is based on a refinement-based modelling and proof-based verification. Our approach utilises the Event-B formal specification language together with a hybrid system and communication modelling patterns to developing a generic hybrid railway signalling system model that can be further refined to capture a specific railway signalling system. The main technical contribution of this article is the refinement of the hybrid train Event-B model with other railway signalling sub-systems. The complete model of the cyber-physical railway signalling system was formally proved to ensure a safe rolling stock separation and prevent their derailment. Furthermore, the article demonstrates the advantage of the refinement-based development approach of cyber-physical systems, which enables a problem decomposition and in turn reduction in the verification and modelling effort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call