Abstract
Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. This problem has been studied in information retrieval, machine learning and data mining. So far, many effective techniques have been proposed. However, most techniques are based on some underlying models and/or assumptions. When the data fits the model well, the classification accuracy will be high. However, when the data does not fit the model well, the classification accuracy can be very low. In this paper, we propose a refinement approach to dealing with this problem of model misfit. We show that we do not need to change the classification technique itself (or its underlying model) to make it more flexible. Instead, we propose to use successive refinements of classification on the training data to correct the model misfit. We apply the proposed technique to improve the classification performance of two simple and efficient text classifiers, the Rocchio classifier and the naive Bayesian classifier. These techniques are suitable for very large text collections because they allow the data to reside on disk and need only one scan of the data to build a text classifier. Extensive experiments on two benchmark document corpora show that the proposed technique is able to improve text categorization accuracy of the two techniques dramatically. In particular, our refined model is able to improve the naive Bayesian or Rocchio classifier's prediction performance by 45% on average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.