Abstract
This paper presents a new volume-of-fluid scheme (M-CICSAM), capable of capturing abrupt interfaces on meshes of arbitrary topology, which is a modification to the compressive interface capturing scheme for arbitrary meshes (CICSAM) proposed in the recent literature. Without resort to any explicit interface reconstruction, M-CICSAM is able to precisely model the complex free surface deformation, such as interface rupture and coalescence. By theoretical analysis, it is shown that the modified CICSAM overcomes three inherent drawbacks of the original CICSAM, concerning the basic differencing schemes, the switching strategy between the compressive downwind and diffusive high-resolution schemes, and the far-upwind reconstruction technique on arbitrary unstructured meshes. To evaluate the performance of the newly proposed scheme, several classic interface capturing methods developed in the past decades are compared with M-CICSAM in four test problems. The numerical results clearly demonstrate that M-CICSAM produces more accurate predictions on arbitrary meshes, especially at high Courant numbers, by reducing the numerical diffusion and preserving the interface shape.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.