Abstract
One of the major challenges in wireless networking is how to optimize the link scheduling decisions under interference constraints. Recently, a few algorithms have been introduced to address the problem. However, solving the problem to optimality for general wireless interference models is known to be NP-hard. The research community is currently focusing on finding simpler, sub-optimal scheduling algorithms and on characterizing the algorithm performance. In this paper, we address the performance of a specific scheduling policy called Longest Queue First (LQF), which has gained significant recognition lately due to its simplicity and high efficiency in empirical studies. There has been a sequence of studies characterizing the guaranteed performance of the LQF schedule, culminating at the construction of the σ-local pooling concept by Joo et al. [10]. In this paper, we refine the notion of σ-local pooling and use the refinement to capture a larger region of guaranteed performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.