Abstract

A central problem in the Jacobi-Davidson method is to expand a projection subspace by solving a certain correction equation. It has been commonly accepted that the correction equation always has a solution. However, it is proved in this paper that this is not true. Conditions are given to decide when it has a unique solution or many solutions or no solution. A refined Jacobi-Davidson method is proposed to overcome the possible nonconvergence of Ritz vectors by computing certain refined approximation eigenvectors from the subspace. A corresponding correction equation is derived for the refined method. Numerical experiments are conducted and efficiency of the refined method is confirmed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call