Abstract

A central problem in the Jacobi-Davidson method is to expand a projection subspace by solving a certain correction equation. It has been commonly accepted that the correction equation always has a solution. However, it is proved in this paper that this is not true. Conditions are given to decide when it has a unique solution or many solutions or no solution. A refined Jacobi-Davidson method is proposed to overcome the possible nonconvergence of Ritz vectors by computing certain refined approximation eigenvectors from the subspace. A corresponding correction equation is derived for the refined method. Numerical experiments are conducted and efficiency of the refined method is confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.