Abstract

Based on previous work for the static problem, in this paper, we first derive one form of dynamic finite-strain shell equations for incompressible hyperelastic materials that involve three shell constitutive relations. In order to single out the bending effect as well as to reduce the number of shell constitutive relations, a further refinement is performed, which leads to a refined dynamic finite-strain shell theory with only two shell constitutive relations (deducible from the given three-dimensional (3D) strain energy function) and some new insights are also deduced. By using the weak formulation of the shell equations and the variation of the 3D Lagrange functional, boundary conditions and the two-dimensional shell virtual work principle are derived. As a benchmark problem, we consider the extension and inflation of an arterial segment. The good agreement between the asymptotic solution based on the shell equations and that from the 3D exact one gives verification of the former. The refined shell theory is also applied to study the plane-strain vibrations of a pressurized artery, and the effects of the axial pre-stretch, pressure and fibre angle on the vibration frequencies are investigated in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.