Abstract

The Alekseev-type annular membranes here refer to annular membranes fixed at outer edges and connected with a movable, weightless, stiff, con-centric, circular thin plate at inner edges, which were proposed originally by Alekseev for bearing centrally concentrated loads. They are used to bear the pressure acting on both membranes and plates, which was proposed originally in our previous work for developing pressure sensors. The pressure is applied onto an Alekseev-type annular membrane, resulting in the parallel movement of the circular thin plate. Such a movement can be used to develop a capacitive pressure sensor using the circular thin plate as a movable electrode plate of a parallel plate capacitor. The pressure applied can be determined by measuring the change in capacitance of the parallel plate capacitor, based on the closed-form solution for the elastic behavior of Alekseev-type annular membranes. However, the previous closed-form solution is unsuitable for annular membranes with too large deflection, which limits the range of pressure operation of the developed sensors. A new and more refined closed-form solution is presented here by improving simultaneously the out-of-plane equilibrium equation and geometric equation, making it possible to develop capacitive pressure sensors with a wide range of pressure operations. The new closed-form solution is numerically discussed in its convergence and effectiveness and compared with the previous one. Additionally, its beneficial effect on developing the proposed capacitive pressure sensors is illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.