Abstract

Fluid ammonia is highly associated because of strong intermolecular hydrogen bonding. This causes different behavior of thermophysical properties from nonpolar fluids, as reflected, for example, in the heat capacity. In this work, a new equation of state explicit in the Helmholtz energy with independent variables of temperature and density was developed, which includes a new associating term. Its uncertainties in density, vapor pressure, saturated liquid and vapor densities, and caloric properties were estimated by comparisons with experimental data. The new equation of state is valid from the triple-point temperature (195.49 K) to 725 K at pressures up to 1000 MPa and densities up to 53.13 mol dm−3. Physically correct behavior within the region of validity and at extremely high temperatures and pressures, and at temperatures far below the triple-point temperature, was obtained by applying constraints on various properties. The unique physical behavior of ammonia shown in some thermodynamic properties is described in detail, which will provide a preliminary template for developing equations of state for other associating fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call