Abstract

The resolution accuracy of the inertial navigation system/global navigation satellite system (INS/GNSS) integrated system would be degraded in challenging areas. This paper proposed a novel algorithm, which combines the second-order mutual difference method with the maximum correntropy criteria extended Kalman filter to address the following problems (1) the GNSS measurement noise estimation cannot be isolated from the state estimation and suffers from the auto-correlated statistic sequences, and (2) the performance of EKF would be degraded under the non-Gaussian condition. In detail, the proposed algorithm determines the possible distribution of the measurement noise by a kernel density function detection, then depending on the detection result, either the difference sequences–based method or an autoregressive correction algorithm’s result is utilized for calculating the noise covariance. Then, the obtained measurement noise covariance is used in MCEKF instead of EKF to enhance filter adaptiveness. Meanwhile, to enhance the numerical stability of the MCEKF, we adopted the Cholesky decomposition to calculate the matrix inverse in the kernel function. The road experiment verified that our proposed method could achieve more accurate navigation resolutions than the compared ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.