Abstract

Aligning proteins based on their structural similarity is a fundamental problem in molecular biology with applications in many settings, including structure classification, database search, function prediction, and assessment of folding prediction methods. Structural alignment can be done via several methods, including contact map overlap (CMO) maximization that aligns proteins in a way that maximizes the number of common residue contacts. In this paper, we develop a reduction-based exact algorithm for the CMO problem. Our approach solves CMO directly rather than after transformation to other combinatorial optimization problems. We exploit the mathematical structure of the problem in order to develop a number of efficient lower bounding, upper bounding, and reduction schemes. Computational experiments demonstrate that our algorithm runs significantly faster than existing exact algorithms and solves some hard CMO instances that were not solved in the past. In addition, the algorithm produces protein clusters that are in excellent agreement with the SCOP classification. An implementation of our algorithm is accessible as an on-line server at http://eudoxus.scs.uiuc.edu/cmos/cmos.html.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.