Abstract

A medium-scale model (1/10) of an underground parking garage is designed and built to study the characteristics of the release and dispersion of hydrogen leaked from hydrogen fuel cell vehicles (HFCVs) in underground garages. Helium is used in place of hydrogen for safety reasons. The helium release experiments are conducted and the variations in helium concentrations at different locations and times in the garage model are obtained. The influence mechanisms of the leakage flow rate and nozzle diameter on the spatial and temporal distributions of the helium concentration are revealed. The experimental results show that the initial release rate of helium is the key factor affecting the distribution of helium concentrations. Both leakage flow rate and nozzle diameter have a significant influence on helium concentrations by affecting the initial release rate. If the release time is long enough, the helium concentrations will experience three stages during release, namely, rapid growth, slow growth and relatively stable. Furthermore, the beams of the garage can reduce the area on the ceiling where the hydrogen concentration exceeds the lower flammable limit (LFL). On the other hand, the beams can make it easier for local hydrogen concentrations to reach the LFL. This work can provide theoretical support for the design and construction of underground parking garages and the arrangement of hydrogen detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call