Abstract

Carbon–carbon composites are produced by chemical vapor deposition/chemical vapor infiltration (CVD/CVI) processes. Models of carbon–carbon composite production processes will help reduce production costs. Reliable process models must, however, include details of the gas phase kinetics in order to identify optimal conditions. We have combined detailed gas phase kinetics, surface kinetics, and a pore closure model to predict pore geometry changes with respect to time. To determine the dominant gas phase kinetics, we reduced a large set of reactions to a minimal set using a sensitivity, rate, and dimensional analysis approach. These robust and relatively fast techniques can be used under a variety of conditions, including those within the pores of the composite. The process model shows that the deposition profile depends on the kinetic model chosen. Using the more realistic reaction model, conditions for uniform, or inside-out, densification can be suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.