Abstract
Reduced-order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced-order models in which the modes of the mistuned system are represented in terms of a subset of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees-of-freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.