Abstract

A reduced-order method is presented to efficiently calculate Green's functions connecting contacts or leads to all the points in a nanostructure in the coherent transport limit. The proposed approach samples a small subset of spatial grid points on the lead and a small subset of energy grid points to build a reduced-order model. The efficacy of the algorithm is demonstrated by applying it to calculate both the electron density and transmission in a resonant tunneling structure, a MOSFET, and a bilayer graphene device. The match in features of both the electron density and transmission versus energy with conventional methods to model devices is excellent while a large reduction in computational time is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.