Abstract
In this paper, a proper orthogonal decomposition (POD) technique is used to establish a reduced-order finite difference (FD) extrapolation algorithm with lower dimensions and sufficiently high accuracy for the non-stationary Navier–Stokes equations, and the error estimates between the reduced-order FD solutions and the classical FD solutions and the implementation for solving the reduced-order FD extrapolation algorithm are provided. Two numerical examples illustrate the fact that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order FD extrapolation algorithm based on POD method is feasible and efficient for solving the non-stationary Navier–Stokes equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.