Abstract

Gas-phase combustion of methylmethacrylate (MMA) monomer is an essential stage of solid polymethylmethacrylate (PMMA) combustion, which is of interest in many applications. A skeletal kinetic scheme for MMA combustion in air is proposed including 44 irreversible elementary reactions for 29 species. The mechanism is derived from the reduced kinetic scheme for MMA oxidation comprised of 263 reactions for 66 components. In this work, the mechanism predictive capabilities are demonstrated by solving the self-ignition problem, as well as the premixed flame propagation problem for MMA-air mixtures. It is shown that the skeletal mechanism overpredicts the ignition delay times due to significant simplification of the MMA decomposition stage reaction pathways. The flame propagation speed is predicted reasonably for lean and nearly-stoichiometric mixtures, but overpredicted for fuel-rich mixtures. Also, a diffusion flame representing the cup burner of liquid MMA is simulated in two-dimensional statement of the problem, the results are shown to agree well with the measurements and numerical simulations performed earlier on the basis of a detailed kinetic scheme. The skeletal mechanism can be used in the numerical simulations of gas-phase combustion of MMA, including the problems of flame propagation over the solid PMMA polymer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.