Abstract

AbstractIn this paper we address the extension of a recently proposed reduced integration eight‐node solid‐shell finite element to large deformations. The element requires only one integration point within the shell plane and at least two integration points over the thickness. The possibility to choose arbitrarily many Gauss points over the shell thickness enables a realistic and efficient modeling of the non‐linear material behavior. Only one enhanced degree‐of‐freedom is needed to avoid volumetric and Poisson thickness locking. One key point of the formulation is the Taylor expansion of the inverse Jacobian matrix with respect to the element center leading to a very accurate modeling of arbitrary element shapes. The transverse shear and curvature thickness locking are cured by means of the assumed natural strain concept. Further crucial points are the Taylor expansion of the compatible cartesian strain with respect to the center of the element as well as the Taylor expansion of the second Piola–Kirchhoff stress tensor with respect to the normal through the center of the element. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call