Abstract

AbstractMetal–organic framework cathodes usually exhibit low capacity and poor electrochemical performance for Li‐ion storage owing to intrinsic low conductivity and inferior redox activity. Now a redox‐active 2D copper–benzoquinoid (Cu‐THQ) MOF has been synthesized by a simple solvothermal method. The abundant porosity and intrinsic redox character endow the 2D Cu‐THQ MOF with promising electrochemical activity. Superior performance is achieved as a Li‐ion battery cathode with a high reversible capacity (387 mA h g−1), large specific energy density (775 Wh kg−1), and good cycling stability. The reaction mechanism is unveiled by comprehensive spectroscopic techniques: a three‐electron redox reaction per coordination unit and one‐electron redox reaction per copper ion mechanism is demonstrated. This elucidatory understanding sheds new light on future rational design of high‐performance MOF‐based cathode materials for efficient energy storage and conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.