Abstract

Based on the redistributed technique of bundle methods and the auxiliary problem principle, we present a redistributed bundle method for solving a generalized variational inequality problem which consists of finding a zero point of the sum of two multivalued operators. The considered problem involves a nonsmooth nonconvex function which is difficult to approximate by workable functions. By imitating the properties of lower-[Formula: see text] functions, we consider approximating the local convexification of the nonconvex function, and the local convexification parameter is modified dynamically in order to make the augmented function produce nonnegative linearization errors. The convergence of the proposed algorithm is discussed when the sequence of stepsizes converges to zero, any weak limit point of the sequence of serious steps [Formula: see text] is a solution of problem (P) under some conditions. The presented method is the generalization of the convex bundle method [Salmon, G, JJ Strodiot and VH Nguyen (2004). A bundle method for solving variational inequalities. SIAM Journal on Optimization, 14(3), 869–893].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.