Abstract

Developing efficient strategies for specific detection of cysteine (Cys) is of great importance for identifying complicated biological roles in physiological and pathological processes. Herein, an ultrasensitive red-emission fluorescent probe (termed 1) is constructed for specific detection and biological visualization of Cys. The linked-anthocyanin fluorophore modified with a twisted N, N-diethylamino moiety shows improved red-shifted emission (642 nm) and absolute quantum yield (0.224 in dimethyl sulfoxide), as well as minimal fluorescence background signal and good water solubility. Meanwhile, utilizing acryloyl chloride as recognition group endows the probe 1 with excellent sensitivity and selectivity towards Cys (limit of detection: 2.93 nM). More importantly, the in vitro and in vivo results confirm that the probe 1 has the capacity of fluorescence imaging of Cys and good biological safety, which holds great promise for bioanalysis and biosensing of Cys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.