Abstract
We consider a sparse grid collocation method in conjunction with a time discretization of the differential equations for computing expectations of functionals of solutions to differential equations perturbed by time-dependent white noise. We first analyze the error of Smolyak's sparse grid collocation used to evaluate expectations of functionals of solutions to stochastic differential equations discretized by the Euler scheme. We show theoretically and numerically that this algorithm can have satisfactory accuracy for small magnitude of noise or small integration time, however it does not converge neither with decrease of the Euler scheme's time step size nor with increase of Smolyak's sparse grid level. Subsequently, we use this method as a building block for proposing a new algorithm by combining sparse grid collocation with a recursive procedure. This approach allows us to numerically integrate linear stochastic partial differential equations over longer times, which is illustrated in numerical tests on a stochastic advection-diffusion equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.