Abstract

Series elastic actuators (SEA) were introduced for serial robotic arms. Their model-based trajectory tracking control requires the second time derivatives of the inverse dynamics solution, for which algorithms were proposed. Trajectory control of parallel kinematics manipulators (PKM) equipped with SEAs has not yet been pursued. Key element for this is the computationally efficient evaluation of the second time derivative of the inverse dynamics solution. This has not been presented in the literature, and is addressed in the present paper for the first time. The special topology of PKM is exploited reusing the recursive algorithms for evaluating the inverse dynamics of serial robots. A Lie group formulation is used and all relations are derived within this framework. Numerical results are presented for a 6- DOF Gough-Stewart platform (as part of an exoskeleton), and for a planar PKM when a flatness-based control scheme is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.